Converging Hearing and Speech Enhancement Technologies

Fan-Gang Zeng University of California, Irvine fzeng@uci.edu; http://www.ucihs.uci.edu/hesp

Contents

- Chapter 1: The amazing speech chain
- Chapter 2: Speech recognition
- Chapter 3: Enhancement technologies
- Chapter 4: Industrial and research trends

The Speech Chain:

From Production to Perception

The *broken* speech chain: Opportunities for enhancement

Production: Source : Filter = Fine structure : Envelope

Gunnar Fant (1919-2009)

Kawahara et al. (1999) Speech Communication

The amazing speech

Perception: Peripheral and central processing

The amazing hearing

You can hear from whisper to 110-dB PA in a moment like this...

Cochlear implant status

- 200,000 users worldwide
- Performance = 80% in quiet
- Talk on the phone
- \$1B revenue, \$25B cap
- 3 FDA approved devices
- 10 start ups

- Power hungry
- Expensive
- Imperfect hearing: CI music vs. Original

Summary

• Chapter 1: Our work is interesting

Broadband spectrogram of the phrase "the top of the hill"

Temporal envelope cues

Rosen (1991) Royal Phil Soc Trans

Speech recognition with primarily temporal cues

Little math

• Flanagan (1980) "Parametric coding of speech spectra"

$$\mathbf{s}(t) \approx \sum_{k=1}^{N} \mathbf{A}_{k}(t) \cos \left[2\pi \mathbf{f}_{ck} t + 2\pi \int_{0}^{t} \dot{\mathbf{\phi}}_{k}(\tau) d\tau + \theta_{k} \right]$$

- Discard absolute phase:

$$\mathbf{s}(t) \approx \sum_{k=1}^{N} \mathbf{A}_{k}(t) \cos \left[2\pi \mathbf{f}_{ck} t + 2\pi \int_{0}^{t} \dot{\mathbf{\phi}}_{k}(\tau) d\tau \right]$$

- Discard relative phase (i.e., frequency modulation):

$$s(t) \approx \sum_{k=1}^{N} A_k(t) \cos[2\pi f_{ck} t]$$

What is fine structure?

Implementation

• Combo of Dudley's vocoder and Flanagan's phase vocoder

Spectra: What does FM encode?

Zeng, Nie, Stickney et al. PNAS (2005)

Sentence, speaker, and tone recognition

Combo: 49 Target: 49

Masker: 🍕

Zeng, Nie, Stickney et al. PNAS (2005) Zeng, Nie, Stickney et al. PNAS (2005)

Role of common FM: Binding and segregation

Courtesy of John Chowning at Center for Music Research, Stanford University

A Unified Model

Summary

- Chapter 1: Our work is interesting
- Chapter 2: Speech cues are redundant and complementary

Clear speech perception

Liu, Del Rio, Bradlow and Zeng, JASA (2005)

Speech recognition with hearing aid and cochlear implant

Kong, Stickney, and Zeng JASA (2005)

Kong, Stickney and Zeng, JASA (2005)

Summary

- Chapter 1: Our work is interesting
- Chapter 2: Speech cues are redundant and complementary
- Chapter 3: Increasing functional signal-tonoise ratio is the key

Converging technologies: Hearing aid or Bluetooth headset

www.soundid.com www.hearwireless.com

www.jabra.com

www.rnid.org.uk

Turning iPhone into a hering aid

Micro- and Nano-Technology

Inner ear powered radio

MIT Nature Nanotechnology 2012

Applications for speech and hearing enhancement:

- Stuttering
- Aphasia
- Dyslexia
- Learning disability
- Multiple sclerosis
- Alzheimer's disease
- Autism

. . .

Healthy brain

Brain with damage (lesions or plaques) caused by MS

Summary

- Chapter 1: Our work is interesting
- Chapter 2: Speech cues are redundant and complementary
- Chapter 3: Increasing functional signal-tonoise ratio is the key
- Chapter 4: Converging technologies to solve multiple problems